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1 Introduction

These notes provide an insight to the simplicial and singular homology groups of
topological spaces as well as one of their applications in the Euler Formula. We
start by defining the simplicial homology, a relatively easy way to find homol-
ogy groups for topological spaces that can be triangulated. We then show how
our definitions of the simplicial homology groups are used by looking at the ho-
mology groups of the Torus using our definied simplicial homology theory. The
simplicial homology theory has its limits though, so we then analyze a slightly
”weirder” way to calculate homology groups through singular homology theory.
Singular homology theory lets us find homology groups for all topological spaces
regardless if they can be triangulated or not. We finally end the paper with a
look at the Euler-Poincaré formula and how its application of Homology groups
is important for comparing geometric objects.

These notes are primarily based on the content of Richard J. Trudeau’s Intro-
duction to Graph Theory as well as Fred H. Croom’s Basic Concepts of Algebraic
Topology.

2 Pre-requisites

Previous knowledge of kernels, images, homeomorphisms, and isomorphisms is
assumed for this report

This paper relies on a couple definitions from group theory. We first start
by defining a group G as a set such that for any two elements a, b ∈ G there
exists an operation on a, b such that said operation produces another element,
p ∈ G. Let us call this operation ∼ . In order for G to be a group it must satisfy
the following properties:

1. The operation must be associative. Meaning that for a, b, c ∈ G we must
have that (a ∼ b) c = a ∼ (b ∼ c)
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2. There must also exist an identity element. Meaning that for all a ∈ G
there must exist an e ∈ G such that e ∼ a = a and a ∼ e = a

3. Each element in G must contain an inverse. Meaning that for an identity
element e ∈ G, and for some a ∈ G there must also be a a−1 ∈ G such
that a ∼ a−1 = a−1 ∼ a = e

We then call a subset H of a group G a subgroup if it has the following
properties:

1. Closure: If a ∈ H and b ∈ H then ab ∈ H

2. Identity: 1 ∈ H

3. Inverse: If a ∈ H then a−1 ∈ H

For any subgroup H for a group G we define a left coset as a subset of H such
that:
aH = {ah|h ∈ H}

We say a a subgroup N for a group G is a normal subgroup if and only
if gng−1 ∈ N for all g ∈ G and n ∈ N

Finally for a group G and a normal subgroup N of G we define a quotient
group, G/N , as the set of cosets of N in G.

3 Simplicial Homology Groups

3.1 Definitions

We start by showing what a set of distinct points looks like in a higher dimension
Euclidiean space. We say that a set of k + 1 points, {a0, ..., ak} is geometri-
cally independent if there is no hyperplane of dimension k − 1 that contains
all of the points. Meaning for our set {a0, ..., ak} no three points lie on a line,
and no four of them are contained in a plane, and so on and so forth.

We move on by properly defining what our shapes are going to look like for
our geometrically independent points in these higher dimensions. For a set of
k geometrically independent points, {a0, ..., ak} in Rn for k ≤ n, we define the
k-dimensional geometric simplex, or k-simplex, σk, as the set of all points
x ∈ Rn such that there exists non-negative λ0, ..., λk ∈ R where:

1. x = Σk
i=0λiai

2. Σk
i=0λi = 1
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We say that the {a0, ..., ak} are vertices of σk and σk is positively oriented,
+σk, for the class of even permutations of the vertices and that σk is negatively
oriented, −σk, for the class of odd permutations of the vertices.

An example of an oriented k − simplex would be if we look at a σ1 = {a0, a1}
simplex, an edge, then an example of the positive orientation would be +σ1 =
{a0, a1} and an example of the negative orientation would be −σ1 = {a1, a0}.

When looking at simplexes we also want to analyze how they interact, so we
say two simplexes, σm and σn are properly joined if they do not intersect or if
σm ∩ σn is a face for both simplexes.

For non-negative integers k, n such that k ≤ n, we say that a simplex σk is
a face for another simplex σn if for all ai ∈ σk we have ai ∈ σn.

For a topological space X we look at the triangulation of said space in order
to then define a complex, K, as a finite family of properly joined k-simplexes
such that K contains the faces of each of the k − simplexes. The dimension of
K is the largest positive integer k of all the k-simplexes in K. We call K an
oriented complex if each of its k-simplexes is assigned an orientation.

Suppose for a positive number p we have simplexes σp and σp+1. Then for
the pair (σp, σp+1) we say the incidence number, denoted [σp+1, σp], as
[σp+1, σp] = 0 if σp is not a face for σp+1. If σp is a face for σp+1 then there
exits a vertex, v ∈ σp+1 and v 6∈ σp, such that we can write
+σp+1 = ±{va0, a1, ..., ap}. If +σp+1 = +{va0, a1, ..., ap} then [σp+1, σp] = 1
and if +σp+1 = −{va0, a1, ..., ap} then [σp+1, σp] = −1.

Now that we know more about complexes, simplexes, and orientation we can
move onto to defining the components for a simplicial homology group. We
start with a positive number p, we then define a p − chain as a function cp
from a family of oriented p − simplexes from a complex K such that for each
p-simplex, σp, we have that c(−σp) = −c(+σp). For example, a 0−chain would
be a function from the 0− simplexes to the integers. We denote the p− chain
group, Cp(K),from the family of p− chains on a complex K.

We say an elementary p-chain is a p − chain, c(σp) such that c(τp) = 0
where τp represents every simplex different from σp. We denote an elementary
p-chain by g · σp where g = cp(+σp). Also note that any p− chain, dp, can be
expressed as an arbitrary sum, dp = Σgi · σp, of elementary p-chains.

Suppose we have an elementary p-chain, g · σp, for a positive integer p. Then
we say the boundary of g · σp, denoted as ∂(g · σp), as

∂(g · σp) = Σ[σp, σp−1
i ]g · σp−1

i (1)

for a family of σp−1
i simplexs in a complex K.
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Suppose we have a complex, K, with some orientation imposed on it. Then
we define the p-cycle as a p-chain, zp such that ∂(zp) = 0. We denote the
p-dimensional cycle group, Zp(K), as a family of these p-cycles otherwise a
homeomorphism of the kernel of the boundary mapping, ∂ : Cp(K)→ Cp−1(K).

If we have a p-chain, bp in our complex K, then we say that it is a p-boundary
if there exists a p+1-chain, cp+1, such that ∂(cp+1) = bp. We call the p-
dimensional boundary group, Bp(K), as the family of p-boundaries formed
from the homeomorphic image of ∂(Cp+1(K)).

Finally we define the simplicial p-dimensional homology group of a delta
complex, K, as the quotient group Hp(K) = Zp(K)/Bp(K)

3.2 Simplicial Homology Group of the Torus

Let us find the Homology group of the Torus, T . We can start by looking at the
triangulation of the Torus induced with an orientation as seen in the diagram
below:

v

v v

v

a a

b

b

c

U

L

In this picture, the point v represents the 0-simplexes for the triangulation of
the torus. The lines a, b, c represent the 1-simplexes for the triangulation of the
torus, and the triangles U,L represent the 2-simplexes for the triangulation of
the torus.

Starting with H0(T ), we find that because we only have one vertex than the
kernel of ∂0, or Z0(T ), ends up being a linear combination with one set of in-
tegers which is just Z. Then since we have only one 0-simplex we will get that
the B0(T ) = image(∂1) = v − v = 0 for each 1-simplex. Thus by our previous
definition of the homology and quotient group we get H0(T ) = Z/0 = Z.

Moving onto H1(T ) we follow a similar process. Since we have three 1-simplexes
we get that kernel(∂1) as the linear combination of three separate integers which
ends up giving us kernel(∂1) = Z

⊕
Z
⊕

Z. Then since we only have two 2-

4



simplexes, the image(∂2) is just the addition of two integers, which is just the
set Z. So by our previous definition of the homology and quotient group we get
that H1(T ) = Z

⊕
Z
⊕

Z/Z = Z
⊕

Z

Finally for H2(T ) since we do not have any 3-simplexes then we only need
to find Z2(T ) = ker(∂2). Once again since we only have two 2-simplexes then
we find that the ker(∂2) is just the addition of two integers which is just the set
Z. So we can define the homology group as H2(T ) = Z

Thus we have shown all the homology groups for the triangulation of the torus
in the 2nd dimension.

4 Singular Homology Group

We now move onto a way of extending Homology groups onto more spaces. The
simplicial Homology Group relies on a space being composed of properly joined
simplexes. The Singular Homology theory finds the Homology groups of more
spaces by considering continuous maps from standard simplexes into our space
X. The definitions of the singular homology group are quite similar to that of
the simplicial homology group. However, the singular homology group gives us
the added advantage of being able to find the homology groups of any topolog-
ical space without knowing the triangulation.

Like with the simplicial homology group we must start by defining a simplex.
We define the unit n-simplex for a non-negative integer n as a set in Rn+1

such that:

∆n = {(x0, x1, ..., xn) ∈ Rn+1|Σxi = 1, xi ≥ 0, 0 ≤ i ≤ n} (2)

We say that vi is a vertex of ∆n if its i − th coordinate is 1 and all other
coordinates are 0. Note that ∆n is just the simplex in Rn+1 whose vertices are
the points v0 = (1, 0, ..., 0), v1 = (0, 1, 0, ..., 0), ..., vn = (0, 0, ..., 1).

We move-on by using functions of the simplex into our space to define our
singular homology simplexes. We say the singular n-simplex for a space X
and a non-negative integer n as a continuous function sn : ∆n → X. We denote
the set of all singular n-simplexes in X as, Sn(X). We define the singular
complex for a space X as S(X) =

⋃∞
n=0 Sn(X)

We then continue like in the simplicial homology group by defining a p-chain
in terms of singular homology functions. We define the singular p-chain for
a non-negative integer p as a function cp : Sp(X) → Z from the set of singular
p-simplexes in X into the integers such that cp(sp) = 0 for all but finitely many
singular p-simplexes. We say that the set of of all singular p-chains, Cp(X),
forms a group under the pointwise operation of addition induced by the integers.
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Like in simplicial homology, we must also define what our boundary looks like
in singular homology. We define the singular boundary for a positive integer
p as a homeomorphism ∂ : Cp(X)→ Cp−1(X) such that

∂(g · sp) = Σp
i=0(−1)gi · spi (3)

where g · sp represents an elementary singular p-chain, such that gi is the value
of cp at the singular p-simplex, spi .

We continue by defining a p-cylce and cycle group for singular homology, both
concepts were also in the simplicial homology theory. For a positive integer
p and space X we then define the singular p-cycle as a singlar p-chain, zp,
such that ∂(zp) = 0. We define the p-dimensional singular cycle group of
X as the set of singular p-cycles that is the kernel of the singular boundary,
∂ : Cp(X)→ Cp−1(X).

We also will need to define the p-boundary for singular homology in order to
find homology groups using a similar method from simplicial homology theory.
For a non-negative p we say a singular p-chain, bp, is a singular p-boundary
if there is a singular (p + 1)-chain, cp+1, such that ∂(cp + 1) = bp. We define
the p-dimensional singular boundary group, Bp(X), as set of all singular
p-boundaries that is the image ∂(Cp+1(X)).

The actual definition for a singular homology group is the same as with the
singular homology group. Finally the p-dimensional singular homology
group for a set X is the the quotient group:
Hp(X) = Zp(X)/Bp(X)

4.1 Example

Suppose we have a topological space with a single point, X = x0. We start
by finding the group of all singular p-chains. Since the generators of the chain
group are all the possible p-simplexes that exist in X, which are just maps of
the unit p simplexes into X we get that our singular chain group, Cp(X) = Z.
Looking at the singular boundaries of we find that ∂0(σ0) = 0 for all 0-simplexes,
∂1(σ1) = σ0 − σ0 = 0 because there is only one σ0 simplex for X because X
contains only one point. Finally σ2(σ2) = σ1− σ1 + σ1 = σ1 which follows from
the fact that since X only has one point there is only 1 singular 1-simplex for
X. Finally we can easily compute the singular homotopy groups as

H0(X) = Z0(X)/B0(X) = ker(∂0)/image(∂1) = Z/0 = Z (4)

H1(X) = Z1(X)/B1(X) = ker(∂(1))/image(∂2) = Z/Z = 0 (5)

This is a clear example of a topological space that in which it is not necessary to
triangulate the space in order to find its homology groups. The singular homol-
ogy theory allows us to find homology groups for all toplogical spaces without
needing the triangulation of a topological space.
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5 Euler Theorem with Homology Groups

One application of Simplicial Homology groups is the Euler-Poincaré Theorem.
This theorem allows us to classify polyhedra by their composition in terms of
their p-simplexes.

We start by looking at an oriented complex, K. We say a a family {z1p, z2p, ..., zrp}
of p-cycles is linearly independent with respect to homology if there do
not exist integers g1, ..., gr not all zero such that the chain Σgiz

i
p is homologous

to 0. We say the p-th Betti Number, Rp(K), as the largest integer r for which
there exists r p-cylces that are linearly independent with respect to homology.

Suppose we have an oriented complex, K, with dimension n, with αp denot-
ing the number of p-simplexes for K for p = 0, 1, ..., n. Then the Euler-Poincaré
Theorem tells us the following:

Σn
p=0(−1)pαp = Σn

p=0(−1)pRp(K) (6)

Using the Betti Number for a complex K of dimension n, we define the Euler
Characteristic as

χ(K) = Σn
p=0(−1)pRp (7)

Euler found a specific application for his formula with connected planar graphs
as well as for connected graphs in general. A graph is planar if it is isomorphic
to a graph that has been drawn in a plane with no edge-crossings. A graph is
connected if for every pair of verticies, ai, andaj , there is a sequence of not
necessarily distinct vertices, a1, a2, ..., an in which a1 is joined by an edge to a2,
a2 is joined by an edge to a3, all the way up to an−1 being joined by an edge to
an. Finally the genus of a graph is defined as the subscript of the first surface
among the family of surfaces S0, S1, S2, ... on which the graph can be drawn
without edge-crossings

Euler found that if we have a connected planar graph with V vertices, E edges,
and F faces then:

V − E + F = 2 (8)

More generally, if we have a connected graph with the same vertices, edges,
and faces, along with a genus G, then :

V − E + F = 2− 2G (9)

The importance of these formulas is that they allows us to compare two geo-
metric objects by telling us if they are connected or planar. It is surprisingly
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difficult to tell if two geometric objects are different especially in higher dimen-
sions. Euler’s Theorem allows to compare these objects by simply counting their
vertices, edges, faces, and genus. We get more information about objects and
their graphs using Euler’s formulas.

8


